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Perturbative method for the derivation of quantum kinetic theory based
on closed-time-path formalism
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Within the closed-time-path formalism, a perturbative method is presented, which reduces the microscopic
field theory to the quantum kinetic theory. In order to make this reduction, the expectation value of a physical
quantity must be calculated under the condition that the Wigner distribution function is fixed, because it is the
independent dynamical variable in the quantum kinetic theory. It is shown that when a nonequilibrium Green
function in the form of the generalized Kadanoff-Baym ansatz is utilized, this condition appears as a cancel-
lation of a certain part of contributions in the diagrammatic expression of the expectation value. Together with
the quantum kinetic equation, which can be derived in the closed-time-path formalism, this method provides a
basis for the kinetic-theoretical description.
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[. INTRODUCTION GKB or the counter-term method. In the inversion method,
we introduce an external sourdeo probe the WDFz, and
The nonequilibrium state of a dilute gas system is considwhat is fixed is not the WDF but this source. Hence the
ered to be described by the one-particle distribution functiorcalculation can be carried out without the restriction among
(1PDB, and such an approach to the nonequilibrium systenthe microscopic field variabl€The situation is similar to the
is called the “kinetic theory”[1]. In the kinetic theory, the grand canonical ensemble in the equilibrium theory, where
1PDF is the independent dynamical variable of the systenthe fixed quantity is the chemical potential coupled to 1PDF,
and all the physical quantities in the kinetic theory must bebut the source in the inversion method is not a simple time-
written in terms of the 1PDF. The kinetic equation is andependent chemical potentjal.
equation of motion of the 1PDF, and the dynamics in the An inversion-method approach to derive the QKE was
kinetic theory is described by this equation. presented in Refd9-12: The WDF z is calculated under
A lot of work has been done on the derivation of thethe existence of the source, and the relattenz[ J] is in-
quantum kinetic equatiofQKE) starting from the level of verted intoJ=J[z]. When we setl=0 in this expression,
microscopic field theory. The most popular way may be thed=J[ z] gives an equation of motion for WDF, i.e., the QKE.
one by truncating the BBGKY hierarchy, but here we focus A way of calculating the physical guantities in terms of
on other ways, which utilize the nonequilibrium Green func-the WDF is also given by the inversion method: We first
tion technique, such as the generalized Kadanoff-Bayntalculate the physical quantity as a functional of the source
(GKB) formalism[2,3] or the counter-term methofdt—6]. Q[J], and then substitute=J[z] into Q[J] to obtain
Although the QKE can be derived in this Green-functionQ[z]=Q[J[z]], which now is a functional of the WDF. The
technique, it is not clear how we can treat the Wigner distri-calculation of Q[J] here can be carried out perturbatively
bution function(WDF), which plays the role of the 1PDF in with a propagator- G(®[J], and note that, since no restric-
guantum theory, as the independent variable. In these thetion on the microscopic field is there, all the possible dia-
ries, the WDF appears as a parameter in the nonequilibriurgrams appear.
Green function, and hence is fixed from the exterior. So if we Our purpose here is to provide a way to calculate directly
are going to calculate some quantity as a functional of thé€)[ z] as the functional of WDF. Utilizing the propagator with
WDF, because the WDF and the microscopic field are nothe same form as the GKB ansatexpressed as
independent, the restriction due to the fixing of the WDF—G(©[J(©)[Z]] in this pape), in which the WDFz is the
must be taken into account: e.g., in the path-integral formalfixed parameter, the above way of calculating expectation
ism, the integrations over the microscopic fields must be carvalues can be reformulated. Then we show that not all con-
ried out under the restriction condition. This restriction hastributions of the diagrams are needed to ob@jiz], and the
not been considered in the above formalisms, and hence thepntributions that are canceled can be expressed by corre-
do not give a complete basis for the kinetic theory. sponding time-ordered diagrams: The contributions from a
In this paper, we present a systematic perturbative methodiagram in the nonequilibrium theory can be classified by the
to calculate the expectation value of any physical quantity atemporal order of the vertices in the diagram, and to each
a functional of the WDF. Our approach is based on the intemporal ordering of the vertices, a time-ordered diagram
version method7,8], which is somewhat different from the (called a configuration in this papesorresponds. Then if an
obtained configuration can be separated into two parts by
cutting two propagators at the same instant, the contribution
*Present address: Communication Systems R&D Center, Mitsubfrom that configuration is canceled.
ishi Electronics, Amagasaki 661-8661, Japan. In the course of proof, we reformulate the inversion-
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method approach in the framework of the Legendre transfor- In quantum statistical physics, the natural alternative of
mation[8,13,14. The definition of the nonequilibrium gen- the 1PDF will be the WDF defined as

erating functional is slightly modified in a way characteristic

to the nonequilibrium theory, and the effective action is de- f(X t):f dA_Xe—iK-Ax< ot fp(x+ ﬁ t)>
fined as the Legendre transformation of it. Then the diagram- <"’ \Y, 2
matic rule for the effective action discussed in Héb] can

X AX
2t

be utilized with an extension to the nonequilibrium case. By 2
virtue of this, the QKE can also be expressed in a compact - xS )
form, which is finally given as Eq47). where (x) = (1/\V)=ke'* ¥y, and the angular bracket im-

In the following section, we summarize the inversion- plies the average over initial density matpx (---)=Trp
method approach to the QKE, and reformulate it in the ter- - -- As in Ref.[11], for the sake of perturbative calculation,
mino|ogy of the Legendre transformation. Then in Sec. |||,|t is more convenient to work with the Fourier transform of
the diagrammatic rule for the kinetic theory is discussed: Théhe WDF defined as
rule to calculate the expectation value as a functional of the . . _

WDF is presented in Sec. Ill B and the rule to derive the Zk,q(t)5<¢a(t)‘//k(t)>=J dxe ' CTDXF (L oi(X,1),
QKE is in Sec. Il C. )
II. INVERSION-METHOD APPROACH TO THE KINETIC to which we refer simply as the WDF in the following. Note
EQUATION that za‘,k=zk,q holds due to the Hermitian property pf
Within the closed-time-pattCTP) formalism, Eq.(3) can

In this section, we describe the inversion-method apye represented as

proach to the QKH9-11].

*
A. Probing source and the Green function Zkvq(t)mj [dindyp] g (D (D)

The system to be considered is the same as in[R&f,. a it A
nonrelativistic bosonic field described by the Hamiltonian xexp[%f ds[L(¢1) —L(2) 11 (aslplibay)-
A =Fo+Hiy with k
4
ﬂozz Ek[ﬂwk, ﬂintzi 2 lAﬂL ‘Aﬁl'— lAﬂk'Aﬂk’i (1) In the inversion-method approach to the kinetic theory, we
k 4 kk'.q d a introduce a probing sourcé for z, and calculateJ] as a
. functional of the source. By inverting the relation ds
and a spatially inhomogeneous initial density magixWe  =J[z], the QKE is obtained as an equation of motion Zor
consider the case that the interactidp, can be treated per- by settingJ=0. According to Ref[9], the proper way to
turbatively, and for simplicity, the initial correlation is not introduce the sourcé, q is that the source is built into the
taken into account. See R4flO] for the treatment of the quadratic form of the free part of the Lagrangian in Et),

initial correlation. Lo(#1) — Lo(¥2) == ¥ i Dkq,ij ¥q.j » DY
|
B (iﬁﬁt—fk)aqu‘l‘i\]k'q(t) _i‘]k,q(t) (5)
ka —iJ)q(t) —(ih o= €) g+ idig()]
|
An inverse of this matrix leads to thex2 Green function, Wherez(k(‘)()1 is an unperturbed WDF given by
which is a functional of the sourcd. From the relation
DGO =—i#, we get
ZQ)t;3]= e (e edt1Z{0t))
729s) 29(s) 1 [t
i K, k, —i(wp— o -
CPRENES 9(t_3)e_lwk(t_5)(_(oq © t7) dse (s, @
Z0(S) Zia(S) f

and we have used)y=z%+ 6 4 and wy= € /%. The un-

2 2P
, (6)
perturbed WDF satisfies an equation of motion

_ 9(3— t)eiwq(st)(
0 200
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Jeq(O={hd+i(e— 6q)}z(k(,)%(t)! (8) JO)[z], the contributions due to the perturbative corrections
AJ[z] cancel some part of the unperturbed contributions.
and if we replace(®) by zin Eq. (8), this gives a functional Such an expansion can be expressed diagrammatically by the
expression of the sourcdin terms ofzin the lowest order of ~ usage of a propagator GO[J=J3©)[z]], and the above-
the perturbative inversion. We denote itA%¥[z]. Note that, mentioned cancellation implies that some part of the diagram
in this article, whenever the source has an index of the percan be omitted if we want to evaluate the expectation value
turbative order ag®", it should be understood as a functional @s a functional of the WDF.
of z By the inversion method, we can calculate perturbative From this observation, it is expected that we can directly
correctionAJ[ z] to Eq.(8), and up to the second order of the calculate the expectation val@ z] with the use of propa-
perturbation, the source is expressedzias gator— G(O[J©)[ z]] from the first step. Indeed we can do it,
and our problem in this paper is to clarify what part of the
diagram should be retained in the evaluation of @j&]. In

Jkg(D) =3 2]+ Ay [ Z]=[ o +i (€~ €g) 12k 4(1) fact, the propagator G(O[J(9)[ z]] has the form of the GKB
ansatz with the free particle approximation of the spectral
+in D (2 2 — Zea Zm-qm-q } () function; it can be obtained by replacirzg’)[J] in Eq. (6) by
q.m ‘ z So our consideration here also provides the way to calcu-

late Q[ z] in the GKB formalism.

\? S L@
o5 > f ds{e'“akim=9ZE | 1 (s) o _
Lm Jt C. Formulation with Legendre transformation

+e7iw(k2‘|,m(t75)z(k2)*i ()}, 9) In order to discuss the problem settled in the preceding
b section, it is convenient to rewrite the inversion method in
Wherewfflz,l,m:wq"'wmfk_wl_wmfl and the framework of the Legendre transformation using the

“physical representation” of the CTP formalisfii4]. The
physical representation of the CTP formalism is introduced
by a simple transformation of the variables frafp and i,

@ = % form .
Zqktm= |2 ) {2q,q'Zm—k,m’ —q 211 Zm—1,m' =1/ to ¢ and ¢, , which is defined as
q ., ,m
_Z;’q,zr’;_k’m,_q,Z|,|er_|,m,_|,}. (10) ¢1+ ¢2
b= 5 Ia=1— . (11

The QKE follows from Eq.(9) after the removal of the
source in the left-hand sidéhs). This QKE is reduced to the
usual Boltzmann equation after the Markovian and IocaLl_hen the free part of the Laarandian is rewritten as
approximationg11]. P grang

B. Kinetic-theoretic description in the inversion method

*
In the kinetic theory, the 1PDF is considered to be an (o) =S Yicc
independent dynamical variable and the kinetic equation de- oLFe. A o\ Yia
scribes its dynamics. This means a coarse graining from the

microscopic field variables to the 1PDF. All other quantities » 0 (ifdy— €x) Sk q
should be expressed in terms of the 1PDF, and their dynam- (ih0,— €) g iJiq.c(t)

ics should follow from the kinetic equation. Since such ' '

physical quantities may be defined microscopically by y Yq.c (12
temporary-local functions of the field variables &Xt) Yga’

=Q(i(t)), in order to obtain a complete framework of ki-

netic theory, we must express their expectation values as

functionals of the 1PDF. where we have denoted the sourtén Eq. (5) as J¢ for
In the inversion-method approach, this can be realized bgonvenience. We can see the souiges simply coupled to

first calculating perturbatively the expectation val@gt)  #x#a. Correspondingly, the Green functid®®[Jc] be-

=(Q(t)) with the use of the propagator G(9[J] in the =~ COMeS
preceding section, and then by substituting the source written
by the WDF as in Eq(9) into the obtained functional. The
former procedure will provide us with the expectation value
as a functional of the sourck and the latter reduces it into a G(ko)[t,s;JC] _
functional of the WDFz ’
From some explicit calculatio42], we can see the fol-
lowing fact: After the substitution of=J)[z]+AJ[z] in
the second step, if we expand the obtained expression aroumdhere the respective components are defined as

gegt.sidc] gR4(t.S)

Oiq(tS) o | B
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Z q[Jc]+ 9y of2. Of course, the nonequilibrium expectation

value of symmetrized) is obtained as a functional of the
sources]¢ by

. 1
g8 [t.5:3c]= e(t—s>e"‘°k“‘5’( Z0lsi3cl+ 5

- H(S—t)ei‘“q(s_t)(Zg,)ﬁ[t;Jc]'i'% , (14
| LWy Il
oRq(t9)=—ot-s)e 95, (15 A== |, "
Ueq(t,S)=0(s—t)e'“as V5, . (16)

To use the variableg: andz, as the independent vari-

To use the Legendre transformation formalism, we mus?bles’ we define the Legendre transformatiombby

introduce another sourcé, coupled toyg ¢, and define
the generating functionaw as

I'[zc,zp51A1=W[Jy , dc Al — 2

. I|
x| W3 34,1,

X (Jkq,aZkg,c T Jkq,cZkq,A) (20

Ef [diedpal(the, i+ z¢alpldci—3¢a)) .
whereJ, and J¢ are functionals ofzc and z,, which are

i (te obtained by solving Eq(18). From an identity of the Leg-

X ex gft dt[ Lo(c,¥a) = V(ha ,¢bc) endre transformation, we have
|

+ 2 Jkgali ey, }
g Ttk eac et ollze.zsilsl o DN

kgclU=—— v+ Jkgal=————5 >

17) 6Ziq,a(t) 0Zyq,c(t) o1

i [t
xex;{%ﬁl dt1,Q(¥c) |,

where V is the |nter_act|or_1 part of the CTP Lagranglan and if we remove the unphysical sourdg, the first equa-
Hint(¥1) —Hin(#,) written in terms of o and 4, .
sourcelJ, is unphysical in the sense that the expectatlonIon becomes an equation of motion @fq,c=2 q[‘]C]
value of a Hermitian operator is not guaranteed to be real I S/2, which corresponds to Eq9). In this sense[ is
under the existence of this source. It is just introduced so thdeferred to as the effective action. Now we can obtain the
we can write the WDFz by a derivative of the generating expectation value of) as a functional of the WDFR as
functional, and should be removed after all the calculationfollows:

For the same reason, we have introduced the solgce
which is coupled tdQ(c)—replacement of} by ¢ in the

time-local composite operat®() in which we are inter- ST ze 2y
ested. Note that all the integrands in the exponent of EqQ). Q[t;zc]= C’—A|ZA:|A:0- (22
are local in time. Sl A1) '

Here we define two variables

Ill. DIAGRAMMATIC RULE FOR KINETIC THEORY

_ OW[Jys e, 14l _ OW[Js e, lal . . . . .
Ziq,c(t)= T o3 Zig,a(1)= B I Diagrammatic expression of the effective actidris well

(18) inAvestigated. For an expectation value of nonlocal product
(T (t)¥(s)), the effective action is expressed simply by the
two particle irreduciblg2Pl) diagrams[16]. Here, 2PI dia-
Ak mpa s : gram is a diagram that cannot be separated by cutting any
HYPT YT ) IA=2y o F 8 o2, andz, is reduced to  pajr of propagators. For the expectation value of a local
Tyt y— i — T+ T ) =0. Note that we regarg* ¢y product, such as the 1PDF, the situation is more complicated.
as ™ (t+0)y(t) in the course of the path integration. Par- In this section, we utilize the rules presented in Héb|
ticularly, zy=0 is realized by removing only the unphysical with a nonequilibrium extension and clarify the meaning of
sourcel, , and in this case: becomes a functional df: as  the rule. For notational simplicity, the time arguments and

When the sources are removeg}; is reduced to(T¢ ¢
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wave-number indices will not explicitly be written if it is not with a shorthand notation. Of cour€? is reduced taz(®

misleading. in Eq. (13) by settingd,=0. Note that retarded or advanced
nature ofgR or g”, respectively, is recovered only in the
A. Diagrammatic expression of the effective action physical casel;=0.

) _ ) _ ] Then the generating function® can be expressed as
First we consider a diagrammatic expansion of the gener-

ating functionalw. The building blocks of the diagram con-

stitute a 2x 2 propagator- G(® given below, an interaction i B
vertex V(i ,c) given in Eq.(17) and an external leg 7 WLJ,15]=Trln GO+ «[J1,], (29
Q(¢¢c) coupled tol, . In the diagram, an arrow expresses

the contraction operator .
b whereJ expresses the set df andJ, andx is the sum of

all the connected diagrams constructed by the propagator

5 —G)J], the vertexV, and the external le¢), . For sim-
plicity, we suppress the argumelnt in this section.
B J dtds Oy c(t)

k,q o
O A(1)
o

6¢;,C(S) . (23) (a)

S A(S)

The 2x 2 Green functiorG(? is defined as an inverse of the
matrix in the bilinear form of the exponent in EAQ.7),

5 i Ja iho,—e\"* [g¢ R

(0) =_ =
G e da] h(ifwt—e iJc A
(24
(b)

where the tilde implies the unphysical cakg# 0. Using the
physical casel,=0 given in Eqgs.(14)—(16), the compo-

nents of Eq(24) can be written as
=c C |t C
g7[Ja.dcl=(1~-g [Jc]ﬁ g-[Jcl, (25
~ Ja
1+gC[JC1‘]A]E ng (26)

~ Ja~
0"3a Jc]=g" 1+ i;;gc[ac,m), @) ©

X G(t,s)

FRENSRE

FIG. 1. Examples of time-ordered configurations. The open

circle expresses the external poi@t The diagram(a) can be ar-
] 3 3 ranged into eight configurations shown (im) and (c). The differ-
~ A A~ A i ifi
QA[JA "]C]ng(iﬁ _ EQC[JC ’JA]iﬁ) gR (29) ﬁ|n|§e between grouggb) and(c) will be clarified at the end of Sec.
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Next we evaluate Eq29) at J=JO[z]+ AJ[z] [cf. (9)], i i . i -
and substitute it into the definitiai20) of the effective action 7 T1ZI=R, gW[J( Nz]1) - 7 kE dt
I'. Expandingl’ aroundJ=J©)z] in terms of AJ[z], the a7
terms linear inAJ are canceled, and we obtain ><(J(kg)‘A[Z]quchrJ(kg)’c[z]qu’A)_ (35)

i - i
—T[z]=TriInGO[IO+AJ]+ «[I[2]]- ~{(IO+AJ,)z
h ﬁ{ . e Here, R, is a diagrammatic operation defined by the follow-

(IO AT, 30 ing process.
(Je c)Zs} (30 (1) The first process dR, can be expressed schematically

as
+«[z],
_|

AJ, AJy
252\ AJc) "2\ AJe

&\
&\

(31

Uk
//
\(/é
>

-1

N\

[ -3

f

wherel'® A,, and’x are defined, respectively, by

%F(O)[Z]ETr InGO[J©7]— %—{J,(AO)ZCJrJE:O)ZA}, (32)
(36)
g°(t,9g%(s,t)  igR(t,)gi(sb)
AZ(I'S):_<-~A ~R ~Arr oA ) . .
ig"(t,s)g7(s,t) —g°(t,9)g7(s,t) to which we refer as the “cut-and-patch” operation: If there
(33 is atwo particle reducibléPR part in the diagram, separate
101 AJ 0 . the graph into two pieces by cutting the corresponding pair
~ ~ (O)F 1(0 A of propagators. In each of the separated diagrams, make the
w[z]= 2] ]+ Tr kgs k{iﬁG( &) )]( 0 iAJCH ' resultant two external lines contractg(t)yc(t) or
i X (t) 2 (1), which we call theze or z, leg, respectively.
(34  Then reconnect the two diagrams by contracting téégs

with A, .
Equation (31) corresponds to Eq(3.21) in Ref. [15], and (2) Carry out the procedurél) in all possible ways, and
then, as it is proved in Refl15], the effective action can be sum up all the resulting diagrams including the original one.
expressed as For example,

“ld)-dbrfoo- o oo

(37

WhereAzT1 is expressed by thick lines.

As it was discussed in Rgf15], the operatiorR, cancels Qlt;zc]=R,
some part of the 2PR diagrams, and in this sehséas a
modified 2PI property. It is reduced to the usual 2Pl when we O 1 )
discuss an effective action of the nonlocal operatorfNote that)™[z] in Eq. (35 does not depend oy . Dia-
I (1) y(s). In the following, we will clarify what are the grammatically, inside the operatioR, is a sum of all the
contents c‘)f this modified 2F,>I property connected diagrams with one external point expressing

' Q(¢c). For definiteness, we consider a casd
B. Meaning of the diagrammatic rule = Ykl as an example. In the following, since we

Recovering the argumeny in Eq. (35), the expectation have setz,=1,=0 in Eq. (38), the Green function
value Q as a functional of the 1PDF is obtained from Eq. G(O[J(¥[z]] is reduced to Eq(13) in which z9[J.] is
(22) as replaced byz

5W[J‘°)[Z],|A]) 39

ol a(t)

zZy=1,=0
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\
diagram is arranged in such a way that the vertices are put on

\\
the time axis from right to left. Then assigning the factors of

propagators and vertices, each time ordering gives different FIG. 2. Vanishing configuration due to causaliior definite-

contribution. In the following, we refer to the diagram with a "ess. the four-point interaction in El) is considered.

fixed time ordering of the vertices as the “time-ordered con- ] ]

figuration” or simply the configuration. For example, the dia- Produced by a pair of Green functiog§(s,t) andg”(t,s"),

gram in Fig. 1a) can be arranged as the eight configurationgVhich implies they must be connected to vertices at téne

shown in Figs. tb) and Xc). Other possible configurations ands’ later thant. So, if the subdiagram does not have an

can be eliminated by the following mechanism. external point, any time-ordered configuration of the subdia-
The vertices in the diagram expresa&s);) —V(i,) re-  gram must have a vertex that is possessed at the latest time as

written asy, and ¢, which is odd iny, for genericV, and shown in Flg._ 3, qnd this gives a vanlshl_ng cont_rlbutlon due

contains at least ong, or ¢ . Then, we can conclude that 0 the causality discussed in the preceding section.

the time-ordered configuration like Fig. 2, where a vertex is 1hus itis enough to consider the connection ofzhdeg

on the latest time, vanishes: Assuming the vertex of Fig. 2 i@ndZc leg, where the external point belongs to the subdia-

on timet, a(t) or ¢%(t) therein must be contracted by 9ram with thez, leg. In contrast to the, leg, thezc leg
g’(t,s) or gR(s,t) (t>s), respectively(recall that we are must be possessed on the latest time within the subdiagram:

working in the physical casa, =0), and their advanced or Otherwise, some vertex must be possessed on the latest time
: Eﬁecause the subdiagram with thg leg does not have the

when we calculate an expectation value of a physical quar€Xt€rnal point, and the configuration in Fig. 2 cannot be

tity at time t, the interaction at time later thandoes not ~2voided. As the result, the time-ordered configurationgJor
contribute since the configuration like Fig. 2 cannot behhavealgenﬁrlc form STOW.n |n_F|g. 4k.‘|n|the su_bd|agram xwth
avoided. In other word, the time-ordered configuration of then€Za €9, the external poinQ IS on the latest t'mez and the
diagram forQ must have the external poi@ on the latest ZA leg is connected to the vertices on the later tifihaneed

time within the diagram. In this paper, we call such a fact thg?t P& on the earliest time of the subdiagja@n the other
“causality.” hand, the subdiagram with. leg has the leg on the latest

time.

Let us see the joint of the 5 leg att andzy, ¢ leg at
. . . sby i{gRg™ 17 oo (1,5). Thezy, 4 leg at timet is produced
Now we consider the meaning of the operatRain EQ. 5 pair of prggagators which can be written as
(38). For this purpose, we first examine the cut-and-patch

operation. Since we are considering the physical case
=0, theAA component of(?) as well as theAA compo-
nent of A, vanish. Then, becausk, * can be written as

1. Time-ordered configuration and causality

Before considering the operatidd,, we define the termi-
nologies “time-ordered configuration” and “causality.”

In the nonequilibrium Green function technique, because
the propagator depends explicitly on time, the evaluation of a
diagram may be carried out as a function of time as follows.
For all possible ways of time ordering of the vertices, the

2. Meaning of the operatiork,

LR ., A i R
IgE,k(t ,t)gk,’i,(t,t )y=io(t' —t")e™! k(t t)gE,k

X (1", 0)gy 1 (L) +i6(t"—t")

—1_ _( gCgC IgRgA) -t XeiU’R’(t”*t’)gg’k(t",t)g’:"E,(Ltrr).
2 igAgR 0 (40)
0 i{g"g"} " o
- On the other hand, the,, ¢ leg at times is produced

H R~NA1I—-1 RNA1—1~4CACryAqRL—1 ]!
979"} 979" "g79"{g"g"} by a pair of propagators, one of which isg;{ya(s,s’)
B9 or —gga(s,s’) and the other is —gg,yq,(s”,s) or

the CC component ofAz’l disappears. Thus, in E¢36), the
connection of twaz. legs is absent.

Moreover, in Eq.(38), the connection of twa, legs is
forbidden by the following reason. Since there is only one
external pointQ in each diagram for Eq.38), the external
point belongs to only one of the two subdiagrams connected
by A2_1- Then, if both of the two subdiagrams are connected F|G. 3. The time-ordered configuration of subdiagram with, a
with their z, legs, the one that does not contain the externaleg but without the external pointFor convenience, the timeis
point Q must vanish due to causality: Tlzg leg at timetis  chosen to be later thasi.)
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and the signature<{1)* is assigned. Thus through the total
process ofR,, the instantaneous 2PR configuration appears
S (—1)%C=0 times.
As a result, the operatioR, on a diagram implies that we
FIG. 4. The generic structure of the diagram @irz]. can eliminate the instantaneous-2PR configurations, which
will be produced from the original diagram. For example,
_gacr’q,(s",s)_ As discussed above, the. leg is nonzero considering Eq(38) in the fourth order of the perturbation,

only whens>s’,s”, and the following relations hold in this When we evaluate the diagram shown in Figa)1lwe only
case: need to calculate the contributions of the instantaneous 2Pl

configurations shown in Fig.(i), and can eliminate the in-

1 _ya—iogt' =) yRC o oy — yRIC 11 o stantaneous 2PR ones(in). A simpler example can be seen
ot —s)e s Oqq (8:5)=0qq (181, in Ref. [11] (explicit calculations are shown in Refl12)),

AC AC where the four-point function is calculated up to the first

o (818 =0g ,(s".t"). (41 order of the perturbation. There appear tadpole diagrams, but

their contributions are canceled when the four-point function

With the aid of Eqs(40) and (41), we have is expressed in terms of the WDF. From the view point of our

rule, the contribution from the tadpole diagrams in Réd.]

LR ., . A o can be eliminated by thR, operation in Eq(38) because all

) kz , dtdsig;  (t',1)gy, . (t,t")i of the time-ordered configurations produced from those dia-

ead grams are instantaneous 2PR.

0(t”— S)ei wqr(t"fs)g

-1 RIC, ., AC ,_,
(=970 g0 (1.9)9,5 (5,89 (S",9)
- _g.E’aC(t' ,s’)gé{%,(s",t"), (42) C. Quantum kinetic equation

Finally, we summarize the rule for deriving the QKE. The
wheret’,t">s’,s" holds. This implies that the joint afy,  physical sourcel; as a functional of, is obtained by set-
andzc legs can simply be expressed as ting zy=0 in the first equation of Eq21) since this condi-

tion is equivalent tal, = 0. With the use of Eq(35), it can

i\\\\\f::ﬁ i{gRgA}'l 2\3\\\ _ "\\ \\, be expressed as o

. — 10)r¢- — T
43 Jeltize]=3¢[t 2] fds 6z, (1) 2

A=0
Note that, on the rhs of Eq43), the time order of the ver-
tices is restricted unlike usual diagrams: The vertices origi- X RZ(—) —zc(8)}, (44
nally connected to the, leg are on later time than those 6Ja(s) J=300)[z, =0]
originally connected ta; leg. This implies that the diagram
on the rhs of Eq(43) contains only the configurations that
can be separated into two parts by cutting the pair of propaand the QKE for the WDFz; is obtained by setting
gators at the same instant. In this sense, we call such a timgg[t;z-]=0.
ordered configuration “instantaneous 2PR configuration.” To obtain the explicit expression @, / 6z, in Eq. (44),
For instance, the configurations shown in Figb)lare in-  we differentiate the identitg=z([J(°)[ z]] with respect to
stantaneous 2PR, and those () are instantaneous 2PI. z and obtain
Summarizing, the cut-and-patch operati@6) extracts an
instantaneous 2PR configuration from the original diagram
with the opposite signature. 530 5300 520 570 -1
. . A A C C
The second process @&, is to cut and patch in all pos-

sible ways and to sum up the resultant diagrams. This pro- 0Zc 02y — oy 8

cess ensures that the instantaneous 2PR configuration is pre- | 6J2) 539 6729 5729

cisely canceled out afteR, is carried out. As it was shown AN 83y 8de .
above, the cut-and-patch process just restricts the time order- 2,=0 =301z =0]

ing of the vertices, and except the signature, the contribution (45)

produced by the cut-and-patch process is included in the
original diagram. Then we should count how many times the ©)rs. O+ )
same contribution appears throughdRh. Considering a Becauseze’[tiJa ,Jc] and zy7[t;:ds . Jc] are given by
configuration that is instantaneous 2PR with respecNto —g°(t,t) and —ig*(t,t), respectively, their derivatives can
pairs of propagators, such a configuration appears in a did€ calculated using the definitiort5) and (28). Then we
gram wherek of the correspondindy pairs of the propagators can see that the rhs of EG5) is nothing butA, * (multi-
are cut and patched. There g§€, ways of choosind pairs  plied byi#) given in Eq.(39), and 5J(AO)/5ZA is reduced to

026101-8
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830 ()

6Zyq,a(1) 2,=0

{0 g gk (1:S)

=—{ho+i(e—eg)}

X5k,k'5q,q'5(t_s)- (46)

Thus, in the rhs of Eq(44), the last term in the braces
compensates for the first terfief. (8)], and the QKE can
simply be written as

{ho+i(ex— € HRa(Zkq clt: Ic= I 2c 1D} =0.
(47)

2P| configurations of the diagrams fay, ¢, and by operat-
ing {#d;+i(ex—€q)}. This rule can be confirmed by the ex-
ample in Ref.[11] (details are in Ref[12]). There, it is
explicitly shown that the tadpole diagrams fos are can-

celed through the process of inversion. According to our rule

the tadpole diagrams in Rdfl1] must vanish because they
necessarily lead to instantaneous 2PR configurations.

IV. DISCUSSION

PHYSICAL REVIEW E 65 026101

the microscopic field variable must be carried out in a way so
that the value of the WDF is fixed.

As pointed out in Sec. Il B, the method presented here can
straightforwardly be used in the GKB formalism. What we
have used for the propagator is a GKB ansatz with the free-
particle approximation of the spectral functioa(t,s)
=gR(t,s) — g”(t,s). The GKB ansatz is defined for a more
general form of the spectral function, which implies a corre-
sponding renormalization of the free part of the Lagrangian.
Even using a more generic form of the spectral function, our
method is applicable if condition@0) and(41) are held with
the replacement of the free-particle spectral function
e '@(t=9) py the renormalized ona(t,s). (These conditions
are nothing but the semigroup property discussed in Ref.
fl?].) Other parts of the proof are based on the retarded or
advanced character of the propagators, which is not affected
by the use of a generic spectral function. Thus, even in the
generic GKB formalism, where the diagrammatic rule may
be different due to the renormalization, the instantaneous
2PR configuration can be eliminated if the semigroup prop-
erty is held for the GKB ansatz.

Note that our method is not valid for the time correlation

function of @ such ag Q(t)Q(s)) because we have used the
condition that the external point expressi@fc) appears

We have presented a systematic method by which to calnly once in the diagram. For the calculation of the time

culate an expectation valu@(t) of some physical quantity
Q as a functional of the WDFz Using the propagator
GO[JIO)[z]], which has a form of the GKB ansatz, the pre-
cise expression o[ z] is obtained by eliminating the in-

correlation function of the composite operator, some of the
instantaneous 2PR configuration may not be canceled.
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