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Perturbative method for the derivation of quantum kinetic theory based
on closed-time-path formalism
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Within the closed-time-path formalism, a perturbative method is presented, which reduces the microscopic
field theory to the quantum kinetic theory. In order to make this reduction, the expectation value of a physical
quantity must be calculated under the condition that the Wigner distribution function is fixed, because it is the
independent dynamical variable in the quantum kinetic theory. It is shown that when a nonequilibrium Green
function in the form of the generalized Kadanoff-Baym ansatz is utilized, this condition appears as a cancel-
lation of a certain part of contributions in the diagrammatic expression of the expectation value. Together with
the quantum kinetic equation, which can be derived in the closed-time-path formalism, this method provides a
basis for the kinetic-theoretical description.
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I. INTRODUCTION

The nonequilibrium state of a dilute gas system is cons
ered to be described by the one-particle distribution funct
~1PDF!, and such an approach to the nonequilibrium syst
is called the ‘‘kinetic theory’’@1#. In the kinetic theory, the
1PDF is the independent dynamical variable of the syst
and all the physical quantities in the kinetic theory must
written in terms of the 1PDF. The kinetic equation is
equation of motion of the 1PDF, and the dynamics in
kinetic theory is described by this equation.

A lot of work has been done on the derivation of t
quantum kinetic equation~QKE! starting from the level of
microscopic field theory. The most popular way may be
one by truncating the BBGKY hierarchy, but here we foc
on other ways, which utilize the nonequilibrium Green fun
tion technique, such as the generalized Kadanoff-Ba
~GKB! formalism @2,3# or the counter-term method@4–6#.
Although the QKE can be derived in this Green-functi
technique, it is not clear how we can treat the Wigner dis
bution function~WDF!, which plays the role of the 1PDF in
quantum theory, as the independent variable. In these t
ries, the WDF appears as a parameter in the nonequilibr
Green function, and hence is fixed from the exterior. So if
are going to calculate some quantity as a functional of
WDF, because the WDF and the microscopic field are
independent, the restriction due to the fixing of the WD
must be taken into account: e.g., in the path-integral form
ism, the integrations over the microscopic fields must be
ried out under the restriction condition. This restriction h
not been considered in the above formalisms, and hence
do not give a complete basis for the kinetic theory.

In this paper, we present a systematic perturbative met
to calculate the expectation value of any physical quantity
a functional of the WDF. Our approach is based on the
version method@7,8#, which is somewhat different from th
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GKB or the counter-term method. In the inversion metho
we introduce an external sourceJ to probe the WDFz, and
what is fixed is not the WDF but this source. Hence t
calculation can be carried out without the restriction amo
the microscopic field variable.~The situation is similar to the
grand canonical ensemble in the equilibrium theory, wh
the fixed quantity is the chemical potential coupled to 1PD
but the source in the inversion method is not a simple tim
dependent chemical potential.!

An inversion-method approach to derive the QKE w
presented in Refs.@9–12#: The WDF z is calculated under
the existence of the source, and the relationz5z@J# is in-
verted intoJ5J@z#. When we setJ50 in this expression,
05J@z# gives an equation of motion for WDF, i.e., the QKE

A way of calculating the physical quantities in terms
the WDF is also given by the inversion method: We fi
calculate the physical quantity as a functional of the sou
Q@J#, and then substituteJ5J@z# into Q@J# to obtain
Q@z#5Q†J@z#‡, which now is a functional of the WDF. The
calculation ofQ@J# here can be carried out perturbative
with a propagator2G(0)@J#, and note that, since no restric
tion on the microscopic field is there, all the possible d
grams appear.

Our purpose here is to provide a way to calculate direc
Q@z# as the functional of WDF. Utilizing the propagator wit
the same form as the GKB ansatz~expressed as
2G(0)

†J(0)@z#‡ in this paper!, in which the WDFz is the
fixed parameter, the above way of calculating expectat
values can be reformulated. Then we show that not all c
tributions of the diagrams are needed to obtainQ@z#, and the
contributions that are canceled can be expressed by co
sponding time-ordered diagrams: The contributions from
diagram in the nonequilibrium theory can be classified by
temporal order of the vertices in the diagram, and to e
temporal ordering of the vertices, a time-ordered diagr
~called a configuration in this paper! corresponds. Then if an
obtained configuration can be separated into two parts
cutting two propagators at the same instant, the contribu
from that configuration is canceled.

In the course of proof, we reformulate the inversio
b-
©2002 The American Physical Society01-1
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JUN KOIDE PHYSICAL REVIEW E 65 026101
method approach in the framework of the Legendre trans
mation @8,13,14#. The definition of the nonequilibrium gen
erating functional is slightly modified in a way characteris
to the nonequilibrium theory, and the effective action is d
fined as the Legendre transformation of it. Then the diagra
matic rule for the effective action discussed in Ref.@15# can
be utilized with an extension to the nonequilibrium case.
virtue of this, the QKE can also be expressed in a comp
form, which is finally given as Eq.~47!.

In the following section, we summarize the inversio
method approach to the QKE, and reformulate it in the
minology of the Legendre transformation. Then in Sec.
the diagrammatic rule for the kinetic theory is discussed: T
rule to calculate the expectation value as a functional of
WDF is presented in Sec. III B and the rule to derive t
QKE is in Sec. III C.

II. INVERSION-METHOD APPROACH TO THE KINETIC
EQUATION

In this section, we describe the inversion-method
proach to the QKE@9–11#.

A. Probing source and the Green function

The system to be considered is the same as in Ref.@11#; a
nonrelativistic bosonic field described by the Hamiltoni
Ĥ5Ĥ01Ĥ int with

Ĥ05(
k

ekĉk
†ĉk , Ĥ int5

l

4 (
k,k8,q

ĉk1q
† ĉk82q

† ĉkĉk8 , ~1!

and a spatially inhomogeneous initial density matrixr̂. We
consider the case that the interactionĤ int can be treated per
turbatively, and for simplicity, the initial correlation is no
taken into account. See Ref.@10# for the treatment of the
initial correlation.
02610
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In quantum statistical physics, the natural alternative
the 1PDF will be the WDF defined as

f K~X,t !5E dDx

V
e2 iK•DxK ĉ†S X2

Dx

2
,t D ĉS X1

Dx

2
,t D L ,

~2!

whereĉ(x)5(1/AV)(keik•xĉk and the angular bracket im
plies the average over initial density matrixr̂; ^•••&5Tr r̂
•••. As in Ref.@11#, for the sake of perturbative calculation
it is more convenient to work with the Fourier transform
the WDF defined as

zk,q~ t ![^ĉq
†~ t !ĉk~ t !&5E dxe2 i (k2q)•xf ~k1q/2!~x,t !,

~3!

to which we refer simply as the WDF in the following. Not
that zq,k* 5zk,q holds due to the Hermitian property ofr̂.

Within the closed-time-path~CTP! formalism, Eq.~3! can
be represented as

zk,q~ t !}E @dc1dc2#cq* ~ t !ck~ t !

3expH i

\Et I

t

ds@L~c1!2L~c2!#J ^c1,I ur̂uc2,I&.

~4!

In the inversion-method approach to the kinetic theory,
introduce a probing sourceJ for z, and calculatez@J# as a
functional of the source. By inverting the relation asJ
5J@z#, the QKE is obtained as an equation of motion foz
by settingJ50. According to Ref.@9#, the proper way to
introduce the sourceJk,q is that the source is built into the
quadratic form of the free part of the Lagrangian in Eq.~4!,
L0(c1)2L0(c2)5( i j ck,i* Dkq,i j cq, j , by
Dk,q5S ~ i\] t2ek!dk,q1 iJk,q~ t ! 2 iJk,q~ t !

2 iJk,q~ t ! 2~ i\] t2ek!dk,q1 iJk,q~ t !
D . ~5!
An inverse of this matrix leads to the 232 Green function,
which is a functional of the sourceJ. From the relation
DG(0)52 i\, we get

Gk,q
(0)@ t,s;J#52u~ t2s!e2 ivk(t2s)S z̄k,q

(0)~s! zk,q
(0)~s!

z̄k,q
(0)~s! zk,q

(0)~s!
D

2u~s2t !eivq(s2t)S zq,k
(0)~ t ! zq,k

(0)~ t !

z̄q,k
(0)~ t ! z̄q,k

(0)~ t !
D , ~6!
wherezk,q
(0) is an unperturbed WDF given by

zk,q
(0)@ t;J#5e2 i (vk2vq)(t2t I )zk,q

(0)~ t I !

1
1

\Et I

t

ds e2 i (vk2vq)(t2s)Jk,q~s!, ~7!

and we have usedz̄k,q
(0)5zk,q

(0)1dk,q and vk5ek /\. The un-
perturbed WDF satisfies an equation of motion
1-2
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PERTURBATIVE METHOD FOR THE DERIVATION OF . . . PHYSICAL REVIEW E 65 026101
Jk,q~ t !5$\] t1 i ~ek2eq!%zk,q
(0)~ t !, ~8!

and if we replacez(0) by z in Eq. ~8!, this gives a functional
expression of the sourceJ in terms ofz in the lowest order of
the perturbative inversion. We denote it asJ(0)@z#. Note that,
in this article, whenever the source has an index of the
turbative order asJ( i ), it should be understood as a function
of z. By the inversion method, we can calculate perturbat
correctionDJ@z# to Eq.~8!, and up to the second order of th
perturbation, the source is expressed byz as

Jk,q~ t !5Jk,q
(0)@z#1DJk,q@z#5@\] t1 i ~ek2eq!#zk,q~ t !

1 il (
q8,m

$zq,q8
* zm2k,m2q8

* 2zk,q8zm2q,m2q8%~ t !

2
l2

2\ (
l,m

E
t I

s

ds$eivq,k,l,m
(2) (t2s)Zq,k,l,m

(2) ~s!

1e2 ivk,q,l,m
(2) (t2s)Zk,q,l,m

(2)* ~s!%, ~9!

wherevq,k,l,m
(2) 5vq1vm2k2v l2vm2 l and

Zq,k,l,m
(2) 5 (

q8,l8,m8
$z̄q,q8

* z̄m2k,m82q8
* zl,l8zm2 l,m82 l8

2zq,q8
* zm2k,m82q8

* z̄l,l8z̄m2 l,m82 l8%. ~10!

The QKE follows from Eq.~9! after the removal of the
source in the left-hand side~lhs!. This QKE is reduced to the
usual Boltzmann equation after the Markovian and lo
approximations@11#.

B. Kinetic-theoretic description in the inversion method

In the kinetic theory, the 1PDF is considered to be
independent dynamical variable and the kinetic equation
scribes its dynamics. This means a coarse graining from
microscopic field variables to the 1PDF. All other quantiti
should be expressed in terms of the 1PDF, and their dyn
ics should follow from the kinetic equation. Since su
physical quantities may be defined microscopically
temporary-local functions of the field variables asQ̂(t)
5Q„ĉ(t)…, in order to obtain a complete framework of k
netic theory, we must express their expectation values
functionals of the 1PDF.

In the inversion-method approach, this can be realized
first calculating perturbatively the expectation valueQ(t)
5^Q̂(t)& with the use of the propagator2G(0)@J# in the
preceding section, and then by substituting the source wri
by the WDF as in Eq.~9! into the obtained functional. The
former procedure will provide us with the expectation val
as a functional of the sourceJ, and the latter reduces it into
functional of the WDFz.

From some explicit calculations@12#, we can see the fol-
lowing fact: After the substitution ofJ5J(0)@z#1DJ@z# in
the second step, if we expand the obtained expression ar
02610
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J(0)@z#, the contributions due to the perturbative correctio
DJ@z# cancel some part of the unperturbed contributio
Such an expansion can be expressed diagrammatically b
usage of a propagator2G(0)

†J5J(0)@z#‡, and the above-
mentioned cancellation implies that some part of the diagr
can be omitted if we want to evaluate the expectation va
as a functional of the WDF.

From this observation, it is expected that we can direc
calculate the expectation valueQ@z# with the use of propa-
gator2G(0)

†J(0)@z#‡ from the first step. Indeed we can do
and our problem in this paper is to clarify what part of t
diagram should be retained in the evaluation of theQ@z#. In
fact, the propagator2G(0)

†J(0)@z#‡ has the form of the GKB
ansatz with the free particle approximation of the spec
function; it can be obtained by replacingz(0)@J# in Eq. ~6! by
z. So our consideration here also provides the way to ca
late Q@z# in the GKB formalism.

C. Formulation with Legendre transformation

In order to discuss the problem settled in the preced
section, it is convenient to rewrite the inversion method
the framework of the Legendre transformation using
‘‘physical representation’’ of the CTP formalism@14#. The
physical representation of the CTP formalism is introduc
by a simple transformation of the variables fromc1 andc2
to cC andcD , which is defined as

cC5
c11c2

2
, cD5c12c2 . ~11!

Then the free part of the Lagrangian is rewritten as

L0~cC ,cD!5(
k,q

S ck,C*

ck,D* D
3S 0 ~ i\] t2ek!dk,q

~ i\] t2ek!dk,q iJkq,C~ t !
D

3S cq,C

cq,D
D , ~12!

where we have denoted the sourceJ in Eq. ~5! as JC for
convenience. We can see the sourceJC is simply coupled to
cD* cD . Correspondingly, the Green functionG(0)@JC# be-
comes

Gk,q
(0)@ t,s;JC#5S gk,q

C @ t,s;JC# gk,q
R ~ t,s!

gk,q
A ~ t,s! 0

D , ~13!

where the respective components are defined as
1-3
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JUN KOIDE PHYSICAL REVIEW E 65 026101
gk,q
C @ t,s;JC#52u~ t2s!e2 ivk(t2s)S zk,q

(0)@s;JC#1
1

2D
2u~s2t !eivq(s2t)S zq,k

(0)@ t;JC#1
1

2D , ~14!

gk,q
R ~ t,s!52u~ t2s!e2 ivk(t2s)dk,q , ~15!

gk,q
A ~ t,s!5u~s2t !eivq(s2t)dq,k . ~16!

To use the Legendre transformation formalism, we m
introduce another sourceJD coupled tocC* cC , and define
the generating functionalW as

expS i

\
W@JC ,JD ,I D# D

[E @dcCdcD#^cC,I1
1
2 cD,I ur̂ucC,I2

1
2 cD,I&

3expF i

\Et I

tF
dtH L0~cC ,cD!2V~cD ,cC!

1(
k,q

Jkq,Dck,C* cq,CJ G
3expF i

\Et I

tF
dt IDQ~cC!G , ~17!

where V is the interaction part of the CTP Lagrangia
H int(c1)2H int(c2) written in terms ofcC and cD . The
sourceJD is unphysical in the sense that the expectat
value of a Hermitian operator is not guaranteed to be
under the existence of this source. It is just introduced so
we can write the WDFz by a derivative of the generatin
functional, and should be removed after all the calculati
For the same reason, we have introduced the sourceI D ,
which is coupled toQ(cC)—replacement ofĉ by cC in the
time-local composite operatorQ(ĉ) in which we are inter-
ested. Note that all the integrands in the exponent of Eq.~17!
are local in time.

Here we define two variables

zkq,C~ t ![
dW@JD ,JC ,I D#

dJkq,D~ t !
, zkq,D~ t ![

dW@JD ,JC ,I D#

dJkq,C~ t !
.

~18!

When the sources are removed,zC is reduced to^Tĉ†ĉ

1ĉĉ†1ĉ†ĉ1T̃ĉ†ĉ&/45zk,q1dk,q/2, andzD is reduced to
i ^Tĉ†ĉ2ĉĉ†2ĉ†ĉ1T̃ĉ†ĉ&50. Note that we regardc* c
as c* (t10)c(t) in the course of the path integration. Pa
ticularly, zD50 is realized by removing only the unphysic
sourceJD , and in this case,zC becomes a functional ofJC as
02610
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zk,q@JC#1dk,q/2. Of course, the nonequilibrium expectatio

value of symmetrizedQ̂ is obtained as a functional of th
sourcesJC by

Q@ t;JC#5
dW@JD ,JC ,I D#

dI D~ t ! U
JD5I D50

. ~19!

To use the variableszC and zD as the independent vari
ables, we define the Legendre transformation ofW by

G@zC ,zD ;I D#[W@JD ,JC ,I D#2(
k,q

E
t I

tF
dt

3~Jkq,Dzkq,C1Jkq,Czkq,D!, ~20!

whereJD and JC are functionals ofzC and zD , which are
obtained by solving Eq.~18!. From an identity of the Leg-
endre transformation, we have

Jkq,C~ t !52
dG@zC ,zD ;I D#

dzkq,D~ t !
, Jkq,D~ t !52

dG@zC ,zD ;I D#

dzkq,C~ t !
,

~21!

and if we remove the unphysical sourceJD , the first equa-
tion becomes an equation of motion ofzkq,C5zk,q@JC#
1dk,q/2, which corresponds to Eq.~9!. In this sense,G is
referred to as the effective action. Now we can obtain

expectation value ofQ̂ as a functional of the WDFzC as
follows:

Q@ t;zC#5
dG@zC ,zD ;I D#

dI D~ t !
uzD5I D50 . ~22!

III. DIAGRAMMATIC RULE FOR KINETIC THEORY

Diagrammatic expression of the effective actionG is well
investigated. For an expectation value of nonlocal prod

^ĉ†(t)ĉ(s)&, the effective action is expressed simply by t
two particle irreducible~2PI! diagrams@16#. Here, 2PI dia-
gram is a diagram that cannot be separated by cutting
pair of propagators. For the expectation value of a lo
product, such as the 1PDF, the situation is more complica
In this section, we utilize the rules presented in Ref.@15#
with a nonequilibrium extension and clarify the meaning
the rule. For notational simplicity, the time arguments a
1-4
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PERTURBATIVE METHOD FOR THE DERIVATION OF . . . PHYSICAL REVIEW E 65 026101
wave-number indices will not explicitly be written if it is no
misleading.

A. Diagrammatic expression of the effective action

First we consider a diagrammatic expansion of the gen
ating functionalW. The building blocks of the diagram con
stitute a 232 propagator2G̃(0) given below, an interaction
vertex V(cD ,cC) given in Eq. ~17! and an external leg
Q(cC) coupled toI D . In the diagram, an arrow express
the contraction operator

2(
k,q

E dtdsS d

dck,C(t)

d

dck,D(t)

D
3G̃k,q

(0)~ t,s!S d

dcq,C* ~s!

d

dcq,D* ~s!

D . ~23!

The 232 Green functionG̃(0) is defined as an inverse of th
matrix in the bilinear form of the exponent in Eq.~17!,

G̃(0)@JC ,JD#[
i

\ S JD i\] t2e

i\] t2e iJC
D 21

5S g̃C g̃R

g̃A g̃DD ,

~24!

where the tilde implies the unphysical caseJDÞ0. Using the
physical caseJD50 given in Eqs.~14!–~16!, the compo-
nents of Eq.~24! can be written as

g̃C@JD ,JC#[S 12gC@JC#
JD

i\ D 21

gC@JC#, ~25!

g̃R@JD ,JC#[S 11g̃C@JC ,JD#
JD

i\ DgR, ~26!

g̃A@JD ,JC#[gAS 11
JD

i\
g̃C@JC ,JD# D , ~27!

g̃D@JD ,JC#[gAS JD

i\
2

JD

i\
g̃C@JC ,JD#

JD

i\ DgR ~28!
02610
r-

with a shorthand notation. Of courseG̃(0) is reduced toG(0)

in Eq. ~13! by settingJD50. Note that retarded or advance
nature ofgR or gA, respectively, is recovered only in th
physical caseJD50.

Then the generating functionalW can be expressed as

i

\
W@J,I D#5Tr ln G̃(0)@J#1k@J,I D#, ~29!

whereJ expresses the set ofJD andJC , andk is the sum of
all the connected diagrams constructed by the propaga
2G̃(0)@J#, the vertexV, and the external legI D . For sim-
plicity, we suppress the argumentI D in this section.

FIG. 1. Examples of time-ordered configurations. The op
circle expresses the external pointQ. The diagram~a! can be ar-
ranged into eight configurations shown in~b! and ~c!. The differ-
ence between groups~b! and~c! will be clarified at the end of Sec
III B.
1-5
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JUN KOIDE PHYSICAL REVIEW E 65 026101
Next we evaluate Eq.~29! at J5J(0)@z#1DJ@z# @cf. ~9!#,
and substitute it into the definition~20! of the effective action
G. ExpandingG aroundJ5J(0)@z# in terms ofDJ@z#, the
terms linear inDJ are canceled, and we obtain

i

\
G@z#5Tr ln G̃(0)@J(0)1DJ#1k†J@z#‡2

i

\
$~JD

(0)1DJD!zC

1~JC
(0)1DJC!zD% ~30!

5
i

\
G (0)@z#2

1

2\2 S DJD

DJC
DD2S DJD

DJC
D 1k̃@z#,

~31!

whereG (0), D2, andk̃ are defined, respectively, by

i

\
G (0)@z#[Tr ln G̃(0)@J(0)#2

i

\
$JD

(0)zC1JC
(0)zD%, ~32!

D2~ t,s![2S g̃C~ t,s!g̃C~s,t ! i g̃R~ t,s!g̃A~s,t !

i g̃A~ t,s!g̃R~s,t ! 2g̃D~ t,s!g̃D~s,t !
D ,

~33!

k̃@z#[k†J@z#‡1Tr (
k>3

1

k H 1

i\
G̃(0)@J(0)#S DJD 0

0 iDJC
D J k

.

~34!

Equation ~31! corresponds to Eq.~3.21! in Ref. @15#, and
then, as it is proved in Ref.@15#, the effective action can be
expressed as
w
to

q

02610
i

\
G@z#5R2S i

\
W†J(0)@z#‡D2

i

\ (
k,q

E
t I

tF
dt

3~Jkq,D
(0) @z#zkq,C1Jkq,C

(0) @z#zkq,D!. ~35!

Here,R2 is a diagrammatic operation defined by the follow
ing process.

~1! The first process ofR2 can be expressed schematica
as

~36!

to which we refer as the ‘‘‘cut-and-patch’’ operation: If the
is a two particle reducible~2PR! part in the diagram, separat
the graph into two pieces by cutting the corresponding p
of propagators. In each of the separated diagrams, make
resultant two external lines contractcC* (t)cC(t) or
icD* (t)cD(t), which we call thezC or zD leg, respectively.
Then reconnect the two diagrams by contracting theirz-legs
with D2

21.
~2! Carry out the procedure~1! in all possible ways, and

sum up all the resulting diagrams including the original on
For example,
~37!
ing

e

whereD2
21 is expressed by thick lines.

As it was discussed in Ref.@15#, the operationR2 cancels
some part of the 2PR diagrams, and in this sense,G has a
modified 2PI property. It is reduced to the usual 2PI when
discuss an effective action of the nonlocal opera
ĉ†(t)c(s). In the following, we will clarify what are the
contents of this modified 2PI property.

B. Meaning of the diagrammatic rule

Recovering the argumentI D in Eq. ~35!, the expectation
value Q as a functional of the 1PDF is obtained from E
~22! as
e
r

.

Q@ t;zC#5R2S dW@J(0)@z#,I D#

dI D~ t ! D U
zD5I D50

. ~38!

Note thatJ(0)@z# in Eq. ~35! does not depend onI D . Dia-
grammatically, inside the operationR2 is a sum of all the
connected diagrams with one external point express
Q(cC). For definiteness, we consider a caseQ̂
5ĉq

†ĉq8
† ĉk8ĉk as an example. In the following, since w

have set zD5I D50 in Eq. ~38!, the Green function
G̃(0)

†J(0)@z#‡ is reduced to Eq.~13! in which z(0)@JC# is
replaced byz.
1-6
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1. Time-ordered configuration and causality

Before considering the operationR2, we define the termi-
nologies ‘‘time-ordered configuration’’ and ‘‘causality.’’

In the nonequilibrium Green function technique, becau
the propagator depends explicitly on time, the evaluation
diagram may be carried out as a function of time as follow
For all possible ways of time ordering of the vertices, t
diagram is arranged in such a way that the vertices are pu
the time axis from right to left. Then assigning the factors
propagators and vertices, each time ordering gives diffe
contribution. In the following, we refer to the diagram with
fixed time ordering of the vertices as the ‘‘time-ordered co
figuration’’ or simply the configuration. For example, the di
gram in Fig. 1~a! can be arranged as the eight configuratio
shown in Figs. 1~b! and 1~c!. Other possible configuration
can be eliminated by the following mechanism.

The vertices in the diagram expressesV(c1)2V(c2) re-
written ascD andcC , which is odd incD for genericV, and
contains at least onecD or cD* . Then, we can conclude tha
the time-ordered configuration like Fig. 2, where a vertex
on the latest time, vanishes: Assuming the vertex of Fig.
on time t, cD(t) or cD* (t) therein must be contracted b
gA(t,s) or gR(s,t) (t.s), respectively~recall that we are
working in the physical caseJD50), and their advanced o
retarded character leads to the vanishing. This implies
when we calculate an expectation value of a physical qu
tity at time t, the interaction at time later thant does not
contribute since the configuration like Fig. 2 cannot
avoided. In other word, the time-ordered configuration of
diagram forQ must have the external pointQ on the latest
time within the diagram. In this paper, we call such a fact
‘‘causality.’’

2. Meaning of the operationR2

Now we consider the meaning of the operationR2 in Eq.
~38!. For this purpose, we first examine the cut-and-pa
operation. Since we are considering the physical casezD

50, theDD component ofG̃(0) as well as theDD compo-
nent ofD2 vanish. Then, becauseD2

21 can be written as

D2
2152S gCgC igRgA

igAgR 0 D 21

5S 0 i $gAgR%21

i $gRgA%21 2$gRgA%21gCgC$gAgR%21D ,

~39!

theCC component ofD2
21 disappears. Thus, in Eq.~36!, the

connection of twozC legs is absent.
Moreover, in Eq.~38!, the connection of twozD legs is

forbidden by the following reason. Since there is only o
external pointQ in each diagram for Eq.~38!, the external
point belongs to only one of the two subdiagrams connec
by D2

21. Then, if both of the two subdiagrams are connec
with their zD legs, the one that does not contain the exter
point Q must vanish due to causality: ThezD leg at timet is
02610
e
a
.

on
f
nt

-

s

s
is

at
n-

e

e

h

e

d
d
l

produced by a pair of Green functionsgR(s,t) andgA(t,s8),
which implies they must be connected to vertices at tims
and s8 later thant. So, if the subdiagram does not have
external point, any time-ordered configuration of the subd
gram must have a vertex that is possessed at the latest tim
shown in Fig. 3, and this gives a vanishing contribution d
to the causality discussed in the preceding section.

Thus it is enough to consider the connection of thezD leg
and zC leg, where the external point belongs to the subd
gram with thezD leg. In contrast to thezD leg, thezC leg
must be possessed on the latest time within the subdiag
Otherwise, some vertex must be possessed on the latest
because the subdiagram with thezC leg does not have the
external point, and the configuration in Fig. 2 cannot
avoided. As the result, the time-ordered configurations foQ
have a generic form shown in Fig. 4: In the subdiagram w
the zD leg, the external pointQ is on the latest time, and th
zD leg is connected to the vertices on the later time~it need
not be on the earliest time of the subdiagram!. On the other
hand, the subdiagram withzC leg has the leg on the lates
time.

Let us see the joint of thezk8k,D leg at t andzqq8,C leg at
s by i $gRgA%kk8,qq8

21 (t,s). Thezk8k,D leg at timet is produced
by a pair of propagators which can be written as

ig k̃,k
R

~ t8,t !gk8,k̃8
A

~ t,t9!5 iu~ t82t9!e2 iv k̃(t82t9)gk̃,k
R

3~ t9,t !gk8,k̃8
A

~ t,t9!1 iu~ t92t8!

3eiv k̃8(t92t8)gk̃,k
R

~ t9,t !gk8,k̃8
A

~ t,t9!.

~40!

On the other hand, thezqq8,C leg at time s is produced
by a pair of propagators, one of which is2gq,q̃

R (s,s8)

or 2gq,q̃
C (s,s8) and the other is 2gq̃8,q8

A (s9,s) or

FIG. 2. Vanishing configuration due to causality.@For definite-
ness, the four-point interaction in Eq.~1! is considered.#

FIG. 3. The time-ordered configuration of subdiagram with azD

leg but without the external point.~For convenience, the times is
chosen to be later thans8.!
1-7
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2gq̃8,q8
C (s9,s). As discussed above, thezC leg is nonzero

only whens.s8,s9, and the following relations hold in this
case:

u~ t82s!e2 ivq(t82s)gq,q̃
R/C

~s,s8!5gq,q̃
R/C

~ t8,s8!,

u~ t92s!eivq8(t92s)gq̃8,q8
A/C

~s9,s!5gq̃8,q8
A/C

~s9,t9!. ~41!

With the aid of Eqs.~40! and ~41!, we have

(
k,k8,q,q8

E dtds igk̃,k
R

~ t8,t !gk8,k̃8
A

~ t,t9!i

$2gRgA%kk8,qq8
21

~ t,s!gq,q̃
R/C

~s,s8!gq̃8,q8
A/C

~s9,s!

52gk̃,q̃
R/C

~ t8,s8!gq̃8,k̃8
A/C

~s9,t9!, ~42!

where t8,t9.s8,s9 holds. This implies that the joint ofzD

andzC legs can simply be expressed as

~43!

Note that, on the rhs of Eq.~43!, the time order of the ver-
tices is restricted unlike usual diagrams: The vertices or
nally connected to thezD leg are on later time than thos
originally connected tozC leg. This implies that the diagram
on the rhs of Eq.~43! contains only the configurations tha
can be separated into two parts by cutting the pair of pro
gators at the same instant. In this sense, we call such a t
ordered configuration ‘‘instantaneous 2PR configuratio
For instance, the configurations shown in Fig. 1~b! are in-
stantaneous 2PR, and those in~c! are instantaneous 2P
Summarizing, the cut-and-patch operation~36! extracts an
instantaneous 2PR configuration from the original diagr
with the opposite signature.

The second process ofR2 is to cut and patch in all pos
sible ways and to sum up the resultant diagrams. This p
cess ensures that the instantaneous 2PR configuration is
cisely canceled out afterR2 is carried out. As it was shown
above, the cut-and-patch process just restricts the time o
ing of the vertices, and except the signature, the contribu
produced by the cut-and-patch process is included in
original diagram. Then we should count how many times
same contribution appears throughoutR2. Considering a
configuration that is instantaneous 2PR with respect toN
pairs of propagators, such a configuration appears in a
gram wherek of the correspondingN pairs of the propagator
are cut and patched. There areNCk ways of choosingk pairs

FIG. 4. The generic structure of the diagram forQ@z#.
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and the signature (21)k is assigned. Thus through the tot
process ofR2, the instantaneous 2PR configuration appe
(k(21)k

NCk50 times.
As a result, the operationR2 on a diagram implies that we

can eliminate the instantaneous-2PR configurations, wh
will be produced from the original diagram. For examp
considering Eq.~38! in the fourth order of the perturbation
when we evaluate the diagram shown in Fig. 1~a!, we only
need to calculate the contributions of the instantaneous
configurations shown in Fig. 1~b!, and can eliminate the in
stantaneous 2PR ones in~b!. A simpler example can be see
in Ref. @11# ~explicit calculations are shown in Ref.@12#!,
where the four-point function is calculated up to the fi
order of the perturbation. There appear tadpole diagrams
their contributions are canceled when the four-point funct
is expressed in terms of the WDF. From the view point of o
rule, the contribution from the tadpole diagrams in Ref.@11#
can be eliminated by theR2 operation in Eq.~38! because all
of the time-ordered configurations produced from those d
grams are instantaneous 2PR.

C. Quantum kinetic equation

Finally, we summarize the rule for deriving the QKE. Th
physical sourceJC as a functional ofzD is obtained by set-
ting zD50 in the first equation of Eq.~21! since this condi-
tion is equivalent toJD50. With the use of Eq.~35!, it can
be expressed as

JC@ t;zC#5JC
(0)@ t;zC#2E ds

dJD
(0)~s!

dzD~ t !
U

zD50

3H R2S dW

dJD~s! D
J5J(0)[zD50]

2zC~s!J , ~44!

and the QKE for the WDFzC is obtained by setting
JC@ t;zC#50.

To obtain the explicit expression ofdJD /dzD in Eq. ~44!,
we differentiate the identityz5z(0)

†J(0)@z#‡ with respect to
z, and obtain

S dJD
(0)

dzC

dJD
(0)

dzD

dJC
(0)

dzC

dJC
(0)

dzD

D
zD50

5S dzC
(0)

dJD

dzC
(0)

dJC

dzD
(0)

dJD

dzD
(0)

dJC

D
J5J(0)[zD50]

21

.

~45!

Because zC
(0)@ t;JD ,JC# and zD

(0)@ t;JD ,JC# are given by

2g̃C(t,t) and 2 i g̃D(t,t), respectively, their derivatives ca
be calculated using the definitions~25! and ~28!. Then we
can see that the rhs of Eq.~45! is nothing butD2

21 ~multi-
plied by i\) given in Eq.~39!, anddJD

(0)/dzD is reduced to
1-8
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PERTURBATIVE METHOD FOR THE DERIVATION OF . . . PHYSICAL REVIEW E 65 026101
dJq8k8,D
(0)

~s!

dzkq,D~ t !
U

zD50

52\$gAgR%kq,k8q8
21

~ t,s!

52$\] t1 i ~ek2eq!%

3dk,k8dq,q8d~ t2s!. ~46!

Thus, in the rhs of Eq.~44!, the last term in the brace
compensates for the first term@cf. ~8!#, and the QKE can
simply be written as

$\] t1 i ~ek2eq!%$R2~zkq,C†t;JC5JC
(0)@zC#‡!%50.

~47!

The QKE can be derived by calculating the instantane
2PI configurations of the diagrams forzkq,C , and by operat-
ing $\] t1 i (ek2eq)%. This rule can be confirmed by the ex
ample in Ref.@11# ~details are in Ref.@12#!. There, it is
explicitly shown that the tadpole diagrams forzC are can-
celed through the process of inversion. According to our ru
the tadpole diagrams in Ref.@11# must vanish because the
necessarily lead to instantaneous 2PR configurations.

IV. DISCUSSION

We have presented a systematic method by which to
culate an expectation valueQ(t) of some physical quantity
Q̂ as a functional of the WDFz. Using the propagato
G(0)

†J(0)@z#‡, which has a form of the GKB ansatz, the pr
cise expression ofQ@z# is obtained by eliminating the in
stantaneous 2PR configurations from the calculations. Th
due to a restriction that must be taken into account in
course of the perturbative calculation: the integration o
s

u
,
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the microscopic field variable must be carried out in a way
that the value of the WDF is fixed.

As pointed out in Sec. II B, the method presented here
straightforwardly be used in the GKB formalism. What w
have used for the propagator is a GKB ansatz with the fr
particle approximation of the spectral functiona(t,s)
5gR(t,s)2gA(t,s). The GKB ansatz is defined for a mor
general form of the spectral function, which implies a cor
sponding renormalization of the free part of the Lagrangi
Even using a more generic form of the spectral function,
method is applicable if conditions~40! and~41! are held with
the replacement of the free-particle spectral funct
e2 iv(t2s) by the renormalized onea(t,s). ~These conditions
are nothing but the semigroup property discussed in R
@17#.! Other parts of the proof are based on the retarded
advanced character of the propagators, which is not affe
by the use of a generic spectral function. Thus, even in
generic GKB formalism, where the diagrammatic rule m
be different due to the renormalization, the instantane
2PR configuration can be eliminated if the semigroup pr
erty is held for the GKB ansatz.

Note that our method is not valid for the time correlatio
function ofQ̂ such aŝ Q̂(t)Q̂(s)& because we have used th
condition that the external point expressingQ(cC) appears
only once in the diagram. For the calculation of the tim
correlation function of the composite operator, some of
instantaneous 2PR configuration may not be canceled.
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